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Abstract

Decohesion is an important failure mode associated with layered composite materials. Here, the energy implications

of material softening are explored in a thermodynamic framework with the result that the dissipated energy (fracture

energy) is greater than the plastic work of the traction on the failure surface. It is also argued that if the traction and

continuum constitutive equations are solved simultaneously, the resulting algorithm is as simple as that for conven-

tional plasticity. For numerical simulations, the material point method displays the attributes of no mesh deformation

so that remeshing is not necessary and the continuous tracking of material points avoids the need for remapping history

variables such as decohesion. Compatibility is invoked in a weak sense with the result that no special algorithms are

needed for mesh realignment along crack surfaces or for double nodes. Example solutions exhibit no sensitivity of

delamination propagation with mesh orientation. � 2002 Published by Elsevier Science B.V.
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1. Introduction

As layered composite materials become stronger and more reliable, they are used in a broad range of
applications that includes, for example, automobile parts and aircraft engine blades. With the increased
potential for considerable loss of life if a segment should fail, there is a need for more comprehensive
procedures to identify the location and the mode of failure. In addition to identifying the mode, it is also
useful to determine if the failure is brittle, a process that could potentially have more catastrophic con-
sequences than a ductile-type failure. Here, we focus on delamination, a type of failure that can occur in
layered composites.
There are many criteria for material failure but the definitions of failure are often vague or defined

implicitly through each criterion. We take material failure to mean the process by which two new free
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surfaces are formed, with brittle fracture as an obvious example. However, there are other forms of material
failure as exemplified by ductile rupture [40], delamination, the breaking of grain boundaries and the
pullout of reinforcing rods or fibers. Our interest is to represent approximately all of these phenomena with
a single model that incorporates the essential features of the state of stress or strain at which failure initiates
and that predicts the correct energy dissipated. Our focus is not on replicating the details of failure, al-
though this can be done in some cases, but on predicting the effect of failure on the far-field stress dis-
tribution and on structural response as reflected, for example, by a force–deflection curve. The proposed
approach is a constitutive equation that describes decohesion. When used with the material point method,
which is a relatively new computational method that is particularly robust for problems with large de-
formations, the proposed approach has a simple structure in that the decohesion comes into the analysis
through the constitutive equation only. There is no attempt to enforce the geometrical continuity of a crack.
Instead, compatibility is enforced in an averaged sense.
Failure modeling involves both theoretical formulations of constitutive equations and numerical simu-

lations, and the two aspects should be carefully delineated. However, the finite element method has become
the method of choice for the majority of engineering applications so that the formulation of the constitutive
equations is often tailored for use by finite elements; conversely limitations imposed by the finite element
method are often interpreted unjustly as a limitation of the theoretical approach. In the following brief
survey, we attempt to keep the discussion of the two phases distinct if at all possible.
A large number of papers related to failure have been based on a zone of softening with an assumed

width in which a continuum constitutive equation continues to be used [5,10,11,18,23,32,44]. A theoretical
difficulty with such an approach is the possible loss of ellipticity and material stability within the band.
When used with finite elements, the band width is associated with the size of the elements and the accuracy
is then limited when the elements become highly deformed.
An alternative (discrete) approach is to consider material failure as a strong discontinuity in displacement

with traction related to the discontinuity. There is a long history in which discrete constitutive equations are
postulated directly as reflected by Barenblatt [6], Hillerborg et al. [15], Needleman [22] and Planas et al. [28].
Feenstra et al. [13,14] and Corigliano [9] provide a nice summary of previous models and describe nu-
merical methods based on the use of interface elements. The use of discrete constitutive equations has not
met with complete favor partially because strong discontinuities are difficult to handle numerically and
convergence with mesh refinement and mesh insensitivity is difficult to show although recent developments
are very encouraging. The use of interface elements may require frequent remeshing if the crack surface
propagates in a curved manner, and double nodes which separate with the evolution of decohesion [33]. The
use of ‘‘constraint’’ elements is a related approach [31]. The work of Ortiz and coworkers [8,27,29] uses a
combination of adaptive meshing with special cohesive elements to implement their constitutive model to
obtain a robust formulation with correct propagation speeds and energy release. Dvorkin et al. [12] describe
an alternative approach whereby discontinuities are handled at the element level rather than enforcing
discontinuities to be along element boundaries. Wells and Sluys [41–43] have extended the concept with
impressive results.
A fundamentally different approach for arriving at a description of failure is provided by Simo et al. [34]

in which the continuum constitutive equation is extended beyond the loss of ellipticity condition into the
softening regime. They argue that this extension should be accompanied by distribution theory which, in
effect, leads to a strong discontinuity. The theory has since been extensively developed by Simo and Oliver
[35], Armero and Garikipati [3], Larsson and Runesson [19], Oliver [24–26] and Armero [4]. The final result
is also a discrete constitutive equation relating stress to the discontinuity in displacement, and here also the
discontinuity is handled at the element or constitutive level.
We have opted for a particular combination of these ideas in an attempt to provide an approach that is as

simple and as straightforward as possible. First, we propose the direct introduction of discrete constitutive
equations with the thought that they should be introduced when ellipticity is lost, although a direct failure
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initiation criterion can be used. No attempt is made to model the post-crack frictional effects that may
occur with surfaces with rough cracks [13,14] although such features can be added. Second, the disconti-
nuity is considered to be part of the constitutive equation and is applied in a manner analogous to that of
Dvorkin et al. [12], Oliver [24,25] and Armero [4]. A point that is undergoing failure is also considered to be
a material point in the continuum so that the decohesion and continuum constitutive equations must be
simultaneously satisfied subject to the restriction of traction equilibrium. Third, we invoke the constitutive
equation in the material point method. The arguments for the direct calculation of the strong discontinuity
in displacement, which we also call decohesion, and the use of the material point method are summarized as
follows:
(i) We retain the conceptual simplicity inherent with the discrete constitutive approach that material

failure does not happen abruptly but occurs smoothly with a gradual reduction in traction as the dis-
placement discontinuity increases.
(ii) We believe it is extremely difficult to evaluate properties of any constitutive equation in the failure

regime. However, it is probably easier to select material parameters for a discrete constitutive equation than
for a continuum model extended into the softening regime.
(iii) The discrete equation can be applied, if desired, at the instance ellipticity is lost so that there is a high

probability that well posedness can be retained although a stability analysis must be performed [36].
(iv) The essential aspects of prescribed stress at the initiation of failure and prescribed energy dissipation

at the end of failure are automatically included in this model, even for the case where the prescribed stress in
not known, a priori, but follows from a bifurcation analysis.
(v) Once decohesion is initiated on a surface of discontinuity, the adjacent continuum tends to unload

into the elastic regime, so the computational simplicity of only needing to combine decohesion with elas-
ticity covers the vast majority of practical cases.
(vi) The decohesion constitutive equation can be developed in a thermodynamical setting, in concert with

many current continuum models, and can include plasticity, damage, viscoelastic and viscoplastic features
that are associated strictly with the decohesion.
(vii) The application of decohesion constitutive equations in the material point method retains the

simplicity of current applications of strong discontinuities at the element level in the finite element method.
However, double nodes or interface elements are not needed and there is the additional potential advantage
that mesh orientation and mesh distortion are not factors that need to be considered.
(viii) Following the method outlined by Allix and Corigliano [2] there is the potential of relating the

decohesion constitutive equation to mixed-mode fracture.
(ix) The use of a discrete constitutive equation may still be a suitable model for diffuse failure if the

primary objective is to obtain an efficient solution for the region away from the failure zone.
(x) Finally, a discrete constitutive equation is a natural approach for modeling the failure of interfaces

[16].
Section 2 provides only a brief description of the material point method since the method has been fully

described in previous papers. Section 3 describes the basic structure of the decohesion model used in our
analysis. Analytical and numerical solutions to model problems [45] including a convergence study are
given in Section 4 which is then followed by conclusions concerning the general applicability of the method
for material failure in general, including delamination.

2. The material point method

With the material point method [37–39] a solid body is discretized by marking a set of material points in
the original configuration that are tracked throughout the deformation process. The deformation of the
body satisfies Cauchy’s equations of motion
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r � r þ qb ¼ qa ð1Þ
in which r denotes the gradient with respect to the current configuration, r is the Cauchy stress, q the mass
density, b the specific body force and a the acceleration. Transformations can be made as necessary to
obtain alternative stress tensors for use in constitutive equations. Similarly, the appropriate strain tensor
can be developed from the deformation gradient at the end of the previous load step and the velocity
gradient at the current step with the assumption that the deformation with each step is infinitesimal. We are
concerned here primarily with material failure of brittle materials so large rigid body motions may occur.
However, since the strains are small, and our model problems preclude large rotations, we choose to focus
the presentation on the essential aspects of the numerical simulation of decohesion in the context of small
deformations.
Let xnp, p ¼ 1; . . . ;Np denote the current position of material point p at time tn, n ¼ 0; 1; 2; . . . These

material points provide a Lagrangian description of the solid body that is not subject to mesh tangling.
Each point at time tn has an associated mass, mp, density, q p

n , velocity, v
n
p, Cauchy stress tensor, r

n
p , strain,

e pn , and any other internal variables necessary for the constitutive model. If temperature changes are im-
portant, internal energy or temperature may also be ascribed to the material points. The material point
mass is constant in time, insuring that the continuity equation is satisfied. Other variables must be updated
with reference to conservation of momentum, conservation of energy, and a constitutive equation.
To make the computations tractable, at each time step of a dynamic algorithm information from the

material points is interpolated to a background computational mesh. This mesh covers the computational
domain and is chosen for computational convenience. A particularly simple choice is a regular rectangular
grid. Of course, the background grid is not completely arbitrary since the part of the grid overlaying a body
of material points must contain at least one material point per element for the algorithm to proceed. After
information is interpolated to the grid, equations of motion are solved on this mesh which is considered to
be an updated Lagrangian frame. For example, to solve the momentum equation on the grid using an
explicit FE algorithm, one must know the value of the momentum at the beginning of the timestep at the
nodal positions. The nodal momentum, mn

i v
n
i , is the product of the nodal mass and nodal velocity, and each

is determined by interpolation,

mn
i ¼

XNp

p¼1
mpNiðxnpÞ;

mn
i v

n
i ¼

XNp

p¼1
mpv

n
pNiðxnpÞ:

ð2Þ

In the above, NiðxÞ is the nodal basis function associated with node i. In this paper, each function NiðxÞ is
the tensor product of piecewise linear functions. The internal forces are determined from the particle
stresses according to

f inti ¼ �
XNp

p¼1
Gn

ipr
n
pmp=q

n
p: ð3Þ

The quantity Gn
ip is the gradient of the nodal basis function evaluated at the material point position,

Gn
ip ¼ rNiðxÞjxnp . The momentum equation is solved with the nodes considered to be moving with the de-
formation to give nodal velocities, vLi , at the end of this Lagrangian time step of size Dt,

mn
i

vLi � vni
Dt

¼ f inti : ð4Þ
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At the end of the Lagrangian step, the new nodal values of velocity are used to update the material points.
The material points move along with the nodes according to the solution given throughout the elements by
the nodal basis functions

xnþ1p ¼ xnp þ Dt
XNn

i¼1
vLi NiðxnpÞ: ð5Þ

Similarly, the material point velocity is updated via

vnþ1p ¼ vnp þ
XNn

i¼1
ðvLi � vni ÞNiðxnpÞ: ð6Þ

The sums in these last two equations extend from 1 to Nn where Nn is the number of nodes in the com-
putational mesh.
A strain increment for each material point is determined using the gradient of the nodal basis function,

Dep ¼
Dt
2

XNn

i¼1
Gn

ipv
L
i

h
þ ðGn

ipv
L
i Þ
T
i
: ð7Þ

This strain increment is then used in an appropriate constitutive equation for the material being modeled to
update the stress at the material point. Any internal variables necessary in the constitutive model can also
be assigned to the material points and transported along with them. Once the material points have been
completely updated, the computational mesh may be discarded and a new mesh defined, if desired, and then
the next timestep is begun.
Although a background mesh is used, the material point method has many of the positive features

normally associated with meshless methods in which the computational discretization is continuously
adjusted as a body deforms. As mentioned by Belytschko et al. [7], these methods are uniquely attuned to
problems of large deformation, and to the propagation of interfaces such as material failure including
cracks. Specific approaches include moving least squares with multiple scales and kernel methods [20] which
are identical once the requirement of consistency is imposed. Moving least squares is a particular example
of partitions of unity [21]. However, a common feature of these methods in their current forms is their
computational cost and routine use for a wide range of applications appears not to be feasible. Currently,
the cost of explicit forms of the element free Galerkin approach exceeds that of low-order elements by a
factor of 4–10. An alternative approach which is much less complex and appears promising for problems
involving penetration and perforation is that of smooth particle hydrodynamics [17,30]. Unfortunately, this
method is subject to instabilities under tensile states of stress and must be applied carefully, particularly to
failure involving fragmentation. Conservative smoothing and kernel renormalization are often necessary to
stabilize and improve the accuracy of the procedure. Computational work is also quadratic in the number
of particles since forces are computed via pairwise interactions, although this can be alleviated using
complicated data structures such as quadtrees and oct-trees.
In comparison with the above methods, the material point method appears to be considerably less

complex with a cost increase for explicit time integration of about 20% over that associated with the use of
low-order finite elements. The approach involving a combination of a background mesh and material
points can accommodate large deformations without mesh tangling. Since the computational mesh is under
user control, it can be chosen so that reasonable time steps may be taken in this Lagrangian frame. Usually,
the time step is restricted by the CFL condition for an explicit algorithm, where the critical time step is the
ratio of the mesh size to the wave speed. Note that this condition depends on the more favorable mesh
spacing, not the material point spacing. Since equations are solved in an updated Lagrangian frame on the
FE mesh, the nonlinear convective terms troublesome in Eulerian formulations are not an issue. Finally,
since the material properties and internal variables are assigned to the material points, the values of these
parameters do not change as the material points are transported to new locations.
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3. Discrete constitutive equation for decohesion

3.1. The theoretical model

We define the initiation of material failure as the time when a material point first experiences a dis-
continuity in displacement but continues to function as a point in a solid continuum. A collection of such
points in a neighborhood defines a failure surface, C. Although the material manifestation is a single
surface, one observes spatially two surfaces, C1 and C2, as sketched in Fig. 1. Each dotted line illustrates
points in space identified with a single material point which can be considered associated with any one of
the spatial points on the line. The sketch illustrates the material surface as a thick line between the two
spatial surfaces but if a Lagrangian description is used, the material surface may be at a totally different
location. Failure is said to be complete when traction can no longer be sustained on the material surface,
i.e., the spatial surfaces no longer have any ligaments connecting them even though one point on each
surface is identified as a single material point. This discontinuity in displacement is called decohesion.
Here, we present a development of discrete constitutive equations using thermodynamics as a framework

with the result that the dissipation inequality is automatically satisfied. The approach entails two essential
assumptions consisting of (i) the form of the free energy, and (ii) the form of the evolution equations. Each
assumption leads to a different model which can only be tested by solving a problem for which either
qualitative or quantitative data exist. To allow for the presentation of different models in a convenient
manner, we present the general framework first, and then show the implications inherent in specific as-
sumptions.
The formulation of the discrete constitutive equation is analogous to what one might use for a rigid-

plastic continuum for which the elastic part of the response is ignored, i.e., the total strain and the plastic
strain are identical. Then the elastic internal strain energy does not exist and the stress must be provided by
the solution to a boundary value problem. However, there remains a contribution to the free energy as-
sociated with hardening and evolution equations for plasticity variables.
Consider a situation where loads are applied to a body that is continuous except on a material failure

surface, C, which displays a strong discontinuity, or decohesion, ud ¼ ½u
. Any point on the surface is also a
point in the continuum which is assumed to be governed by linear elasticity so that the stress, r, and strain,
e, are linearly related by the elasticity tensor, E:

r ¼ E : e: ð8Þ
If n denotes the normal to the surface, then the traction, s, is given by s ¼ r � n. The rate at which power is
being added to the surface by this traction is s � _uud in which a superposed dot denotes a derivative with
respect to time. We postulate that the free energy per unit surface area consists of an initial energy, U0, due
to residual stresses that could result from a curing process, and a term, Ud, which represents the effect of
decohesion:

U ¼ U0 � Udð�uuÞ: ð9Þ

Fig. 1. Material failure as represented by two spatial surfaces, C1 and C2, or one material surface, C: (a) decohesion in the spatial
configuration: two surfaces, (b) decohesion in the material configuration: surface with discontinuity.
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The use of the negative sign is meant to suggest that normally energy is provided by the original material to
the decohesion process. The parameter, �uu, is a scalar representation of the state of decohesion. A specific
choice for Ud (positive) provides part of the decohesion constitutive model. The decohesion, up, is viewed as
‘‘permanent’’ decohesion and is introduced similarly to plastic strain in elasto-plastic continuum models. In
the absence of elasticity, up ¼ ud.
If only up and �uu are considered to be the primary variables describing decohesion, the dissipation power is

Ds ¼ s � _uud � _UU ¼ s � _uup þ �ss _�uu�uu with �ss ¼ oUd
o�uu

: ð10Þ

The generalized traction, �ss, is conjugate to �uu. Instead of the traction starting at zero, as it does for some
existing discrete models [9,22], we visualize that when the failure process starts, ud ¼ 0, up ¼ 0, and the
traction is the initial vector, s0, which depends on the history of the stress path.
We parameterize the development of decohesion through a single, dimensionless monotonically in-

creasing variable, k, and the evolution equations

_uup ¼ _kkme; _�uu�uu ¼ _kkme ð11Þ

in which me and me denote evolution functions that depend on s and �ss. me is a vector whose inner product
with s is assumed to be positive, semi-definite. If we introduce an effective traction

se ¼ s �me; ð12Þ
then the dissipation power becomes

Ds ¼ _kk½se þ �ssme
: ð13Þ
To ensure the dissipation power is positive, define a decohesion function as follows:

Fd ¼ se þ �ssme � se0; se0 > 0: ð14Þ
The function has been constructed in the usual manner so that Fd is negative when the traction components
are zero. We assume decohesion does not occur unless Fd ¼ 0 in which case the dissipation power becomes
Ds ¼ _kkse0, a positive scalar (and Fd > 0 is not permitted). The evolution equations can now be interpreted as
parameterized in terms of dissipation power which is a monotonically increasing parameter. The total
dissipated energy is simply kse0 which depends only on the value of k and not on the path followed.
Next, we consider the decohesion condition, Fd ¼ 0. At the initiation of decohesion, s ¼ s0 and me ¼ me0.

If we assume �ss ¼ 0 at the initiation, then

se0 ¼ s0 �me0: ð15Þ

Typically, �ss increases until se ¼ 0, the point defined to be separation. The values of �ss, me, up and �uu at
separation are denoted by �sss, mes , u

p
s and �uus, respectively, where �sss ¼ se0=m

e
s . Unless there is a load reversal

which brings the two spatial surfaces back into contact, it is assumed that se remains zero after separation.
With the use of (9), the stored surface energy lost due to separation is

UU ¼ �Udð�uusÞ: ð16Þ

The total energy per unit area that must be provided to cause total separation is variously called the
fracture energy, or the energy of separation, UF, and consists of the sum of the stored energy and the
dissipated energy:

UF ¼ UU þ UD: ð17Þ

Because UU is negative, the fracture energy is less than the dissipation.
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In summary, the resulting set of constitutive equations becomes

ðiÞ _rr ¼ E : _ee Continuum elasticity
ðiiÞ _ss ¼ _rr � n Traction equilibrium
ðiiiÞ _uup ¼ _kkme; _�uu�uu ¼ _kkme Evolution equations
ðivÞ �ss ¼ oUd=o�uu Constitutive equation
ðvÞ Fd � se � ðse0 � �ssmeÞ ¼ 0 Consistency
ðviÞ se ¼ s �me and se0 ¼ s0 �me0 Definition of internal variables

ð18Þ

Two additional assumptions remain to completely formulate constitutive equations: (i) the form of the
evolution functions me and me, and (ii) the form of the function Ud which provides a constitutive relation
between �ss and �uu. Even slight changes in the forms of these functions can have significant effects on pre-
dictions. Since the only possible way to evaluate the suitability of decohesive constitutive equations is
indirectly through comparisons of solutions to problems with features provided by experimental data, we
consider (18) to be the basic format and provide different models based on plausible assumptions. The
results of choosing specific forms for me, me and Ud are given next.

3.1.1. Model 1: associated evolution equations
Here we are more specific in our formulation of the decohesion model. In the theoretical formulation, it is

most convenient to use dimensional parameters so that physical interpretations can be easily made; con-
versely, for numerical implementation of the theory, dimensionless variables should be used. With this
objective in mind, we choose k to be dimensionless and consider �uu to have the dimension of length (in
analogy with the decohesion ud). We choose the evolution functions and the decohesion energy to be of the
following forms:

me ¼ �uu0
Ad � s

ðs � Ad � sÞ1=2
; me ¼ �uu0; Ud ¼ U0

ð�uu=�uu0Þqþ1

ðqþ 1Þ ð19Þ

in which Ad is taken to be a positive definite (dimensionless) tensor whose components are material pa-
rameters, as is qP 0. Additional material parameters (constants) are the reference decohesion scalar, �uu0,
and the reference surface energy, U0. We define a reference scalar traction, s0, by the relation U0 ¼ �uu0�ss0. The
immediate result of these choices is that

se ¼ �uu0ðs � Ad � sÞ1=2; �uu ¼ k�uu0; �ss ¼ �ss0ðkÞq ð20Þ

and the evolution functions are obtained as derivatives of the damage function with respect to the corre-
sponding conjugate variables, i.e., the evolution functions are said to be ‘‘associated’’:

me ¼ oFd
os

; me ¼ oFd
o�ss

: ð21Þ

At this point we consider a two-dimensional formulation with n denoting the normal to the failure
surface and t a unit tangent vector as indicated in Fig. 1. Corresponding components of s are sn and st,
respectively. If the traction consists only of a normal component, specify the failure initiation value as snf
and, similarly, let stf denote the failure initiation value for a purely shear case. One approach for incor-
porating these failure initiation conditions is to choose the components of Ad with respect to this local basis
as follows:

½Ad
 ¼ �ss20
1=ðsnfÞ2 0

0 1=ðstfÞ2
� �

: ð22Þ
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The consequences of this choice are

Ds ¼ _kkU0; �ss� � �ss
�ss0

¼ kq; Fd ¼ U0F �
d ; F �

d ¼ se
� � ð1� �ss�Þ;

se ¼ U0se
�
; se

� ¼ ðs � Ad � sÞ1=2

�ss0
¼ s2n

s2nf

�
þ s2t

s2tf

�1=2 ð23Þ

where se
�
is a dimensionless effective traction, �ss� is a dimensionless form of �ss, and F �

d is a dimensionless
decohesion function. The conditions at the initiation of decohesion are u ¼ 0 and se

� ¼ 1 so that se0 ¼ U0, a
condition used in (23).
We note that the decohesion condition (F �

d ¼ 0) reduces to se
� ¼ 1� �ss�. As decohesion occurs �uu increases

and se
�
decreases to zero when �uu ¼ �uu0. Therefore u0 can be interpreted as the value of �uu at which separation

occurs. In the post separation regime, �uu > �uu0, the decohesion condition is se
� ¼ 0. Finally, we give an al-

ternative form for the decohesion evolution function:

me ¼ U0
se�

sn
s2nf
n

�
þ st

s2tf
t

�
: ð24Þ

Since the dissipation rate is _kkU0, the energy dissipated per unit surface area at any moment is simply kU0.
From (20), k ¼ 1 at separation so the maximum energy dissipated is U0 which provides a physical inter-
pretation and a method for determining this particular parameter. The formulation implies the dissipated
energy is independent of path which is generally not representative of real materials. The final value of the
stored energy is obtained by substituting �uu ¼ �uu0 in (19) and using (16). In summary, the final dissipated,
stored and total failure energies are

UD ¼ U0; UU ¼ � 1

ðqþ 1ÞU0; UF ¼ q
ðqþ 1ÞU0: ð25Þ

For the given model, the required data are snf , stf , U0 and q. We can choose �ss0 ¼ snf and then �uu0 ¼ U0=�ss0
to provide values for all of the parameters. Suppose a pure opening-mode path is followed, or st ¼ 0. Then
it is easily shown that the normal component of the decohesion is upn ¼ �uuð�ss0=snfÞ. If �ss0 is chosen to equal snf ,
then �uu equals upn for Mode I. Experimental data obtained from a pure shear mode test can then be used to
assess the adequacy of the model in a process similar to that used to evaluate a Mises plasticity model
whose parameters are selected using data from a uniaxial stress test.
Sometimes non-associated models are required to provide a better fit with experimental data including

observations on the mode of failure. Next we give an example of how a particular non-associated model can
be constructed.

3.1.2. Model 2: non-associated evolution functions
Suppose we retain all aspects of the previous model with the exception that the evolution equation for the

permanent decohesion is in the normal, or opening, direction irrespective of the state of traction:

_uupn ¼ _kkmen; _uupt ¼ 0; men ¼ me � n: ð26Þ
We retain the previous expression for se and the decohesion function. Therefore, the dissipation rate for
normal mode decohesion must be evaluated specifically from the following equation:

Ds;n ¼ s � _uup þ �ss _�uu�uu ¼ _kk½sn _uupn þ �ss�uu0
 ð27Þ
which will be less than that obtained with the associated rule (sometimes called the principle of maximum
dissipation) if st is not zero for at least part of the decohesion. A corresponding development for Mode II
(pure shear) evolution can be obtained by merely replacing normal components of traction with shear
components.
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3.2. Solution to a model problem

We take as the basic model problem the case of a bar of length L, height h and unit depth, with the center
point at one end fixed, the other end extended, and both ends are constrained against rotation as indicated
in Fig. 2. The extension is denoted by d and the resultant force is P. The problem is considered to be one of
plane stress in the x–y plane. The bar is composed of a uniform laminated material with the laminates
forming an angle of a with respect to the x–z plane. The only failure mode considered is that of delam-
ination. Therefore, all failure planes are identified by the fixed unit normal, n. The unit tangent vector, t, is
included in the figure for the sake of completeness. Typically failure initiates at a weak point on one
laminate surface and propagates across the bar so the problem is actually two-dimensional and can only be
solved numerically. However, approximate solutions can be obtained analytically if the following as-
sumptions are made: (i) the stress is uniaxial everywhere, and (ii) decohesion occurs uniformly across the
bar. Solutions based on these assumptions provide an indication of the features of the solution for a wide
range of problem parameters and serve to validate the numerical procedure.
With the assumption of uniaxial stress in a bar of unit depth and width H, the only non-zero stress

component is rxx ¼ r ¼ P=H . The geometry of the problem provides the following relations:

n ¼ sin aex � cos aey ; t ¼ cos aex þ sin aey ;

sn ¼ r sin2 a; st ¼ r sin a cos a:
ð28Þ

If we define the constant scalar, r0, and the constant vector, mec, by

1

r0
¼ sin a

sin2 a
s2nf

�
þ cos

2 a
s2tf

�1=2
; mec ¼ U0r0 sin a

sin a
s2nf

n

�
þ cos a

s2tf
t

�
; ð29Þ

then

Ad � s ¼ �ss0
�uu0

r
r0
mec; se ¼ U0

r
r0

and me ¼ mec ð30Þ

with the assumption of an associated flow rule. The bar is loaded elastically until the stress reaches the value
r0 at which point decohesion is first indicated ðse ¼ U0Þ. From this point on, with the assumption that the
loading continually induces decohesion, the consistency condition implies that

r ¼ r0ð1� kqÞ or k ¼ 1

�
� r

r0

�1=q
ð31Þ

Fig. 2. Notation and parameters associated with the model problem.
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with separation occurring when k ¼ 1. The evolution equation for the permanent decohesion (total dec-
ohesion) reduces to _�uu�uup ¼ _kkmec which can be integrated to obtain u

p ¼ kmec. Therefore, with the use of (31)
and (29), we obtain the components

upx ¼ 1

�
� r

r0

�1=q
U0

1

r0 sin a
; upy ¼ 1

�
� r

r0

�1=q
U0r0 sin

2 a cos a
1

s2tf

�
� 1

s2nf

�
: ð32Þ

If E is Young’s modulus, the bar experiences a homogeneous strain e ¼ r=E for loading from zero stress
up to the point r ¼ r0. After decohesion begins, the elongation of the bar, d, must include the discontinuity,
or

d ¼ eLþ upx : ð33Þ

For this second phase involving decohesion and a decrease in stress (post-peak regime), the average strain,
eave ¼ d=L, is

eave ¼
r0
E
½r� þ ð1� r�Þ1=qg
; r� ¼ r

r0
ð34Þ

in which the key dimensionless parameter, g, is defined by a product of dimensionless parameters:

g ¼ 1

sin a
�uu0
L

 !
�ss0
r0

 !
E
r0

� �
: ð35Þ

To illustrate the effects of dimensionless parameters on the response of a bar, it is conventional to display
the result as force versus deflection. The peak force is simply Pmax ¼ r0H . The slopes in the elastic and
softening regimes become

dP
dd






elas

¼ EH
L

;
dP
dd






soft

¼ EH
L

1

ð1� ðg=P̂P ÞÞ
with P̂P � q 1

�
� P
Pmax

�ð1=qÞ�1

: ð36Þ

Normally, the post-peak behavior consists of a monotonic decrease of load with displacement so that
dP=dd is negative. However, if g is sufficiently small the slope may be positive and this feature indicates a
load reversal that is sometimes called snapback. For the special case of q ¼ 1, load reversal occurs if g < 1.
It follows from (35) that it is always possible to obtain load reversal by simply taking a long enough
specimen. The angle of the failure also plays a significant role. Recall from (29) that the strengths in the
normal mode and shear mode, and a, appear in the expression for r0.
When q 6¼ 1, the slope varies with the stress but values of g can still be selected which will display load

reversal. If load reversal can exist, the interpretation of experimental data must be performed with care
because, with a displacement prescribed loading device, snap down will occur and an incorrect measure of
energy absorption will be obtained. With regard to numerical simulations, special algorithms must be
constructed to provide solutions with load reversal.
Typical response curves based on (34) for various values of q and g are shown in Fig. 3 to illustrate the

general features that are reflected by the decohesion constitutive equation as applied to the axial loading of
a bar. Fig. 3(i), (ii) and (iii) correspond to values of q ¼ 0:8, 1.0 and 1.2, respectively, with the inserts
showing the respective softening functions. The curves labeled a, b and c correspond to values of g ¼ 0:75,
1.25 and 2.0 respectively.
If the decohesion is constrained to be only an opening mode, then
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men ¼ U0
r0 sin

2 a
s2nf

;

upx ¼ U0ð1� r�Þ1=q r0 sin
3 a

s2nf
;

upy ¼ �U0ð1� r�Þ1=q r0 sin
2 a cos a
s2nf

;

ð37Þ

and load deflection curves analogous to those in Fig. 3 can be obtained. A similar situation holds if the
mode is constrained to be one of pure shear.

3.3. Summary comments

Here we summarize the results of this section. The framework for a class of decohesion models consistent
with thermodynamical concepts has been provided. The essential ideas are:

(i) The decohesion constitutive equation is applied simultaneously with the continuum constitutive equa-
tion (elasticity is given here but any other constitutive equation can be used).
(ii) As softening occurs, the sum of the work performed by the traction and the stored energy released by
the material equals the energy dissipated.
(iii) The example decohesion constitutive equation included in (18), (19) and (22) includes four material
parameters which consist of U0, the dissipated energy per unit failure surface (fracture energy), the max-
imum sustainable values of traction, snf , under pure Mode I and stf , under pure Mode II, and a para-
meter q which provides a non-linear aspect to the softening function.
(iv) The material parameters, U0, snf and stf can often be assigned directly from experimental data avail-
able in the literature. A value for the parameter, q, can be determined indirectly by fitting theoretical pre-
dictions to experimental data on a structural element such as the tensile failure of a uniaxial stress
specimen.

Fig. 3. Dimensionless stress, r� ¼ P=Pmax, versus average strain, eave, for decohesion of a bar for various values of q and g: (a) g ¼ 0:75,
(b) g ¼ 1:25, (c) g ¼ 2:0. (i) q ¼ 0:8, (ii) q ¼ 1:0, (iii) q ¼ 1:2.
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4. Numerical applications

A bar subject to failure due to delamination does not exhibit uniaxial stress in the vicinity of the initiation
of decohesion. In fact the stress path is quite complex and can only be reflected by a detailed analysis
involving the assumption of plane stress for a bar that is thin with respect to its height. Nevertheless, the
overall response should be close to that obtained under the assumption of uniaxial stress so that the so-
lutions of the previous section can serve as part of the verification of a numerical method. The modeling of
the propagation of a discontinuity at an arbitrary angle through a mesh may introduce significant but not
quantifiable numerical errors. Here, we show that the material point method provides the basis for a simple
algorithm with numerical results in agreement with the one-dimensional solutions for propagation of
delamination at any angle across the mesh.

4.1. Incorporation with the material point method

In general, there is no need to determine the actual shape of the deformed material element associated
with each material point. However, when material separation occurs, there is a need to consider the effect
on the strain field over the element (compatibility). To illustrate the process, we consider small deforma-
tions so that the original configuration can be used. However, decohesion, and especially separation,
represent large deformations. Typically, each cell with the material point method is chosen to be a square
element with each side of length h. Over each element, the increment in strain, De, and the increment in
decohesion, Dud, are approximated by constants as indicated in Fig. 4 which also shows the unit vector
m ¼ Dud=jDudj. For future use, define the opening,Mn, shear,Mt, and failure,Mm, tensor modes as follows:

Mn ¼ n� n; Mt ¼ 1
2
ðn� tþ t� nÞ; Mm ¼ 1

2
ðn�mþm� nÞ: ð38Þ

We note that Mm reduces to Mn and Mt when m ¼ n and m ¼ t, respectively.
For a given time increment, if the total (average) strain increment, De, is considered fixed, the result of the

decohesion is that the effective strain increment in the remaining part of the material in the element must be
reduced (relaxed) by what might be called a decohesion strain increment, Ded, which satisfies a weak form
of the compatibility conditionZ

Xe

DeddV ¼
Z
oXd

DudMmdA; Dud ¼ Dudm ð39Þ

Fig. 4. A typical element with decohesion.
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in which dV and dA denote differentials of volume on the element, Xe, and of area on the decohesion
surface, oXd, respectively. The magnitude of the decohesion increment, which is in the direction of m by
definition, is Dud. With the assumptions that the decohesion and strain are constant over each element, the
result is the following expression relating the ‘‘relaxation’’ or ‘‘decohesion’’ strain increment to the incre-
ment in decohesion:

Ded ¼ Dud

Le
Mm; Le ¼

Ve
Ad

: ð40Þ

The effective length, Le, is merely the ratio of the element volume to the area of the decohesion surface
within that element. For the two-dimensional case illustrated in Fig. 4, the effective length is

Le ¼ he sin ae; p=46 ae6 p=2 ð41Þ

with a corresponding formula for an angle measured with respect to the vertical side of the material element
if ae < p=4.

4.2. Solution algorithm

The constitutive equations subroutine is invoked with the total strain increment, De, prescribed, with the
total decohesion equal to the plastic decohesion, and with n given and assumed fixed. It is computationally
more efficient to define an alternative mode vector, m�, from which the mode vector, me, and an alternative
tensor mode,M�, are easily determined. Let rpr, uppr and kpr denote the values of r, up and k, respectively, at
the end of the previous step. The requirement is to solve the following set of non-linear equations:

Dr ¼ Drtr � E : Ded; Drtr ¼ E : De;

spr ¼ rpr � n; Dstr ¼ Drtr � n;

m� ¼ Ad � s
�ss0se

� ; me ¼ �uu0m�;

M� ¼ 1
2
ðn�m� þm� � nÞ; Me ¼ �uu0

Le
M�;

rm ¼ E :Me; sm ¼ rm � n;
Ded ¼ DkMe; Dup ¼ Dkme;

Ds ¼ Dstr � Dksm; s ¼ spr þ Ds;

up ¼ uppr þ Dup; k ¼ kpr þ Dk;

�ss� ¼ kq; se
� ¼ 1

�ss0
ðs � Ad � sÞ1=2;

F �
d ¼ se

� � ð1� �ss�Þ ¼ 0;
r ¼ rtr � Dkrm:

ð42Þ

The first step is to assume that no decohesion occurs, to obtain a trial stress and traction:

rtr ¼ rpr þ Drtr; str ¼ rtr � n ð43Þ
and then determine the value of the damage function, F �tr

d , for this trial traction and the existing value kpr. If
F �tr
d 6 e where e is a user-prescribed tolerance, then the step is purely elastic with no additional decohesion
and no further action is required. If the inequality is not satisfied, the decohesion variables must be
incremented.
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Next we describe a one-step algorithm which enforces the requirement Fd ¼ 0 to order ðDkÞ3. Perform a
Taylor expansion of Fd about the trial state:

Fd ¼ aðDkÞ2 þ 2bDk þ cþOðDkÞ3 ð44Þ

in which the last term indicates the order of the remainder and

a ¼ 1
2

o2Fd
ok2






tr

; 2b ¼ oFd
ok






tr

; c ¼ F trd : ð45Þ

We choose Dk ¼ Dk1 and Dk ¼ Dk2 to be the solutions to the first-order and second-order equations, re-
spectively; i.e., 2bDk1 þ c ¼ 0 and aðDk2Þ2 þ 2bDk2 þ c ¼ 0 or

Dk1 ¼ � c
2b

; Dk2 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p

a
ð46Þ

with the sign chosen so that in the limit of infinitesimal Dk we have Dk2 ¼ Dk1.
Consider the case when the model choice of (19) is used and the Taylor expansion is applied to the

dimensionless damage function F �
d . It follows from (45) that

c ¼ ðse� Þtr � ð1� kq
prÞ

2b ¼ ose
�

os
� os
ok

þ qkq�1
pr

2a ¼ os
ok

� o
2se

�

os2
� os
ok

þ ose
�

os
� o

2s

ok2
þ qðq� 1Þkq�2

pr

ð47Þ

in which all terms are to be evaluated at kpr and the trial value of the traction. Note that when q ¼ 1, the last
term in the expression for a is zero. With a modest amount of algebra involving (42), it follows that

os
ok

¼ �sm;
ose

�

os
¼ m

�

�ss0
ð48Þ

and we immediately have the relation

2b ¼ �m
� � sm
�ss0

þ qkq�1
pr : ð49Þ

Next, we proceed to obtain the coefficient a in (47). We utilize (42) and (48) to obtain

o2se
�

os2
¼ 1

�ss20se
� ½Ad �m� �m�
 ð50Þ

which leads to

os
ok

� o
2se

�

os2
� os
ok

¼ ½ðsm � Ad � smÞ � ðsm �m�Þ2

�ss20 se�

: ð51Þ

Finally

o2s

ok2
¼ � osm

ok
¼ �n � E :

oM�

ok
¼ �n � E :

�uu0
Le

n

�
� om�

ok

�
ð52Þ

in which the minor symmetry of E has been used. We note that
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om�

ok
¼ om�

os
� os
ok

¼ � 1

�ss0

o2se
�

os2
� sm ¼ � 1

�ss0
½Ad �m� �m�
 � sm

ose
�

os
�
 

� n � E � �uu0
Le
n

!
¼ � 1

�ss0
ðm� � nÞ : E � �uu0

Le
n ¼ � sm

�ss0

ð53Þ

with the result

ose
�

os
� o

2s

ok2
¼ ½ðsm � Ad � smÞ � ðsm �m�Þ2


�ss20 se�
; ð54Þ

a result identical to that of (51). Therefore

a ¼ ½ðsm � Ad � smÞ � ðsm �m�Þ2

�ss20 se�

þ qðq� 1Þ
2

kq�2
pr : ð55Þ

Even with this rather simple form, preliminary numerical results indicate that the use of the first-order
equation for Dk1 in (46) is sufficiently accurate and the extra computations required to obtain the pa-
rameter given by (55) is not justified.

4.3. Separation

The procedure outlined above holds until either one of two situations arises. The first is that of traction
reversal at the element level and the second is that of separation. The solution algorithm is predicated on a
prescribed strain increment that would have to be released for traction reversal. The manifestation of such a
possibility is that a solution does not exist for the discrete constitutive equation. Near separation, a solution
also may not exist but now the reason is that numerical overflow or underflow may occur because both the
numerator and denominator are close to zero in the determination ofm�. Therefore, an alternative procedure
described next must be implemented for the state of separation. The algorithm can also be considered one for
enforcing a stress-free boundary condition through the decohesive constitutive equation subroutine.
Consider local coordinates, n–t, associated with the failure surface and suppose the trial stress has been

obtained. The updated components of the stress are given in vector form as follows:

rnn

rtt

rnt

8<
:

9=
; ¼

rtrnn
rtrtt
rtrnt

8<
:

9=
;�

E1 E2 0
E2 E1 0
0 0 2G

2
4

3
5 Dednn

Dedtt
Dednt

8<
:

9=
; ð56Þ

where E1 and E2 are components of the isotropic elasticity matrix for the planar situation under consid-
eration. Solutions for rtt, Dednn and Dednt subject to the constraints that rnn ¼ 0, rnt ¼ 0 and Dednt ¼ 0 are given
as follows:

Dednt ¼
rtrnt
2G

;

Dednn ¼
rtrnn
E1

;

rtt ¼ rtrtt � E2Dednn:

ð57Þ

Next, (39)–(41) are used to relate the increments in decohesion strain to the magnitude of the displacement
discontinuity, Dud, and the components of the displacement discontinuity, Dud ¼ Dudm with the result

Dudn ¼ LeDednn; Dudt ¼ LeDednt: ð58Þ
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Finally, the increments in the magnitude of the discontinuity, Dud, and decohesion parameter, Dk ¼ Dud=�uu0,
are obtained.
The separation algorithm is invoked when either traction reversal is sensed (no solution to the standard

decohesion algorithm) or separation is imminent (k > 0:98, say). For the problems considered, no signif-
icant difference in solution is observed if one merely invokes the separation algorithm for k > 0:8.

4.4. Example solutions

The applications given in this section are restricted to cases made with the following assumptions:

(i) The initiation of failure is given directly by a failure criterion rather than by a discontinuous bifur-
cation analysis, and
(ii) The problems are limited to those for which the orientations of the surfaces of decohesion are known,

a priori. Delamination constitutes one member of this class of problems.

The objectives of performing these numerical analyses are the following:

(i) To illustrate that the use of jump in displacement as an internal variable together with a weak im-
plementation of compatibility provides a simple and useful algorithm in the MPM.
(ii) To show that the MPM does not exhibit the finite element pathologies associated with distorted

meshes and instabilities with the result that additional features such as enhanced strains are not required.
(iii) To illustrate by example that the material point method does not exhibit the orientation effect often

seen with finite elements when discontinuities are allowed to propagate at various angles to the mesh sides.

As described by Allix et al. [1], delamination can be a complex process of degradation of both the layers
and the bonds between the layers. Here, we do not attempt to follow all details of the microstructural
process but attempt to represent the most important aspects with the simplified version of decohesion
involving plasticity, values of traction at which decohesion is initiated, and invariance of energy dissipation
with mesh refinement.
The computational domain for the model problem is illustrated in Fig. 5 for an axially loaded bar with a

height to length ratio of 1:6. The right end of the bar is fixed and the other end is loaded through the artifice
of a rigid head with large mass moving at a uniform, constant speed 0.001 to the left. The inclination of the
laminates is identified by the angle a with respect to the x-axis as defined in Fig. 2. Solutions are obtained by
explicit time integration applied to the dynamic equations with a mass density of 1. A quasistatic solution is
obtained by ensuring that the duration of loading is several times the elastic wave transit time for the bar.

Fig. 5. Computational domain for model problem.
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All geometric and material parameters are dimensionless. For convenient display of numerical data,
especially with regard to the convergence study, the height and length of the bar are chosen to be H ¼ 32
and L ¼ 192, respectively. Square elements are used for all cases. The coarsest mesh consists of elements
with size h0 ¼ 8, a time step of Dt ¼ 0:1 and one material point per element as shown in Fig. 5. The
computational domain provides two rows of elements on each side of the bar when h ¼ 8. Mesh refinement
studies consist of cutting h and Dt by a factor of 2 for each refinement. For the numerical simulations, an
imperfection in the form of a 10% reduction in snf at one point is used to control the location of the failure
surface.
The material is elastic with Young’s modulus chosen to be 1024 and Poisson’s ratio is 0.25. The deco-

hesion formulation is invoked with evolution functions based on an associated rule for all cases.
The first set of numerical results shown in Fig. 6 is based on traction-failure values of snf ¼ 1 and stf ¼ 10

to simulate a discontinuity that is primarily in the normal direction (Mode I) for a laminate angle of
a ¼ 90�. The reference surface energy is chosen to be U0 ¼ �uu0 so that the reference traction is �ss0 ¼ 1 since
U0 ¼ �uu0�ss0. The first equation of (30) yields r0 ¼ 1. The effective decohesion at failure is chosen to be
�uu0 ¼ L=512 ¼ 0:375 so that (36) yields g ¼ 2 for a ¼ 90�. Snap back is precluded because g > 1. The initial
imperfection was placed at the center of the bar. For the medium mesh consisting of elements with each side
h ¼ h0=2 ¼ 4, the effective decohesion �uu (which for this case is approximately the normal component, upn) is
indicated in gray scale in Fig. 6(a) with the lightest value being zero. The primary point to emphasize here is
that the decohesive zone does not become diffuse as it propagates across the mesh. In fact it appears that all
of the discontinuity is identified with a single line of elements. Furthermore, complete separation is modeled
by doing nothing more than maintaining zero traction on the failure surface through the decohesive
constitutive equation. Each material point that exhibits the discontinuity can be located anywhere spatially

Fig. 6. Propagation of delamination through the grid for transverse laminates: (a) plots of material points for end displacements of

0.25, 0.50, 3.0 and 5.0, (b) load–displacement curves for various degrees of mesh refinement, (c) load–displacement curves for various

numbers of material points per element.
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Fig. 7. Propagation of Mode I delamination through the grid for laminates at an angle of a ¼ 60�: (a) contour plots of decohesion for
end deflections of 0.24, 0.25, 0.26 and 0.28, (b) plots of material points for end displacements of 0.7, 1.2, 1.7 and 2.0, (c) displacement

trajectories for an end displacement of 0.35, (d) load–deflection plot.
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between the adjacent material points associated with material that has not failed. This feature is merely a
manifestation of associating a discontinuity with a material point with the implication that one material
point is identified with an infinite number of spatial points (Fig. 1). The frames in Fig. 6(a) correspond to
end deflections of 0.25, 0.50, 3.0 and 5.0, respectively.
The peak load on the bar is simply the product of the failure traction, snf ¼ 1, times the width of the bar,

H ¼ 32. With the problem parameters specified above, the slope of the load–deflection curve in the elastic
regime is dP=dd ¼ 171. Similarly, the use of (37) with g ¼ 2 yields dP=dd ¼ �171 when the material is
failing. These results are plotted as the uniaxial solution in Fig. 6(b) together with numerical results for
various degrees of mesh refinement. The numerical results are essentially equivalent but with a slight dis-
crepancy from the exact solution because the numerical approach with one material point per element
simulates a propagating crack that may cause a slight variation from uniaxial stress whereas the exact
solution is based on the premise that the crack opening is the same everywhere across the bar. There is a
slight improvement with mesh refinement for one material point per element in the prediction of the total
deflection at separation. However, as shown in Fig. 6(c) for a course mesh, the agreement between the
numerical and uniaxial solutions is considerably better when four material points per element are used. The
use of nine material points per element produces no significant improvement over four material points.
Next, the results of numerical calculations are given in Fig. 7 for delamination at an angle of a ¼ 60� for

the case of a Mode I simulation obtained by utilizing the same decohesion parameters as those used for the
previous problem. The use of (30) and (36) yields g ¼ 1:3 so the uniaxial stress solution again indicates no
snapback. First, the predicted propagation is shown as contour plots in Fig. 7(a) for the fine mesh of h ¼ 2
and for the relatively small values of end deflections of 0.24, 0.25, 0.26 and 0.28, respectively. This result
shows that the propagation direction through the mesh is very close to the angle specified in the constitutive

Fig. 7 (continued)
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Fig. 8. Propagation of Mode II delamination through the grid for laminates at an angle of a ¼ 60�: (a) plots of material points for end
displacements of 0.7, 1.2, 1.7 and 2.0, (b) displacement trajectories for an end displacement of 0.35, (c) load–deflection plot.
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equation. This is an important feature because there is no special algorithm to enforce compatibility in a
manner analogous to remeshing that, for example, is often used in the finite element literature to align
element sides with an evolving crack. However, predictions of decohesion now occur in a zone with a
bandwidth encompassing approximately two elements.
In Fig. 7(b), we show plots of material points at the relatively large end deflections of 0.7, 1.2, 1.7 and 2.0,

respectively. These plots are given to show that separation is clearly indicated and that this feature is also
obtained without the need for remeshing or special kinematic feature other than enforcing the traction-free
condition through the constitutive equation subroutine. The displacement trajectories at an end displace-
ment of 0.35 are shown in Fig. 7(c). Load–deflection plots are shown in Fig. 7(d) together with the ana-
lytical solution based on the assumption of uniaxial stress. As seen, there is some discrepancy which can be
attributed to two sources: (i) the initiation and propagation of the crack is associated with a localized field
that is not uniaxial stress in the interior of the bar, and (ii) decohesion is predicted for material points
located in a zone that is approximately two elements wide. The latter situation exists because there is no
kinematic construction in the displacement field to accommodate a crack across elements. The net effect is
that the dispersed failure zone causes more energy to be dissipated than a single failure plane with the
consequence that the softening slope of the load–deflection curve is less then the exact slope. To compensate
for the excess dissipation one might reduce the softening parameter in the decohesive constitutive equation
to achieve the correct global dissipation based on the fracture energy for the material and the area of the
fracture zone. Finally, because of the small slope in the softening portion of the load–displacement curve
relative to the exact solution for uniaxial stress, the condition for a load reversal is met for the numerical
solution. Rather than implementing a procedure to handle the load reversal as indicated by a lack of so-
lution for the constitutive equation subroutine, the traction is merely dropped to zero. This accounts for the
abrupt drop in the force and the subsequent ringing.
Finally, a simulation of Mode II failure with a ¼ 60� was performed through the artifice of setting

snf ¼ 10 and stf ¼ 1. The other parameters were chosen to be �ss0 ¼ snf and U0 ¼ 0:375. For this mode of
failure and these parameters, the uniaxial analysis indicates that load reversal should occur (g ¼ 0:43).
However, because of the dispersed failure zone, load reversal is not detected numerically. This provides
another indication that a larger softening modulus should be specified when cracking at angles other than
0� or 90� is observed. The locations of material points at the relatively large end deflections of 0.7, 1.2, 1.7
and 2.0, respectively, are given in Fig. 8(a). The first (top) plot shows the end of the decohesion process in

Fig. 8 (continued)
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Mode II and the subsequent plots are showing locations of material points as separation occurs. The
separation is not as clean as that shown for Mode I in Fig. 7(b) as indicated by the upward displacement of
the left side of the bar after separation. A close examination of the stress field shows that just prior to
separation significant axial stresses are built up in the region adjacent to the lower and upper boundaries.
These stresses are of opposite sign so an internal moment is being developed as is a resultant shear along a
vertical plane at the midsection of the bar. It is this vertical shear force that imparts a vertical velocity to the
left (unconstrained) portion of the bar with the consequence that the left portion shows a displacement after
decohesion. The source of the axial stresses and the transverse shear could be due to the fact that the al-
gorithm imparts a single-valued velocity field to all material points within an element and until the sepa-
ration is at least one cell wide, such relatively small perturbations to the stress field may be present. These
modifications to the stress field may also be causing the variations to the expected smooth and mono-
tonically decaying feature of the load–displacement plot shown in Fig. 8(c).
Similar analyses have been performed for laminate angles of a ¼ 45� and a ¼ 30� [45].

5. Summary

A rigid, plastically softening decohesion model has been combined with continuum elasticity and traction
continuity at a material failure surface to provide a relatively simple description for the evolution of ma-
terial failure. When incorporated in the material point method, the result is a constitutive equation sub-
routine that is similar to softening plasticity. A length parameter associated with a material element
provides a mechanism for ensuring convergence with mesh refinement. As the tip of a failure surface
propagates through the mesh, the formulation inherent with the material point method appears to preclude
the diffusion of the crack tip, a feature often seen with conventional finite elements. Further investigations
involving the propagation of curved cracks is necessary to determine whether or not the proposed method is
general and robust. Nevertheless, in light of the long history of complex numerical analyses in connection
with crack propagation, we believe the simplicity of the decohesion formulation in the material point
method holds considerable promise for development into a general method for predicting the evolution of
material failure.
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